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We present full-dimensional potential energy surfaces (PESs) for hydrated chloride

based on the sum of ab initio (H2O)Cl−, (H2O)2, and (H2O)3 potentials. The PESs

are shown to predict minima and corresponding harmonic frequencies accurately

based on comparisons with previous and new ab initio calculations for (H2O)2Cl−,

(H2O)3Cl−, and (H2O)4Cl−. An estimate of the effect of the 3-body water inter-

action is made using a simple 3-body water potential that was recently fit to tens

of thousands of ab initio 3-body energies. Anharmonic, coupled vibrational calcula-

tions are presented for these two clusters, using the “local monomer model” for the

high frequency intramolecular modes. This model is tested against previous “exact”

calculations for (H2O)Cl−. Radial distribution functions at 0 K obtained from quan-

tum zero-point wavefunctions are also presented for the (H2O)2Cl− and (H2O)3Cl−

clusters.

I. INTRODUCTION

Electrolyte solutions play a central role in many chemical and biological processes in-

cluding acid-base equilibria and ion transport. [1, 2] The understanding of the solvation

process and its effects on the structure of water have consequently been the subject of in-

tense experimental and theoretical interest for over 100 years. [3, 4] Despite this interest,

electrolyte solutions remain challenging systems for which numerous questions have not been

adequately answered. For instance, recent studies have focused on the controversy relating

to the presence or absence of alkali and halide ions at the air-water interface. [5–10]
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A variety of potentials that attempt to describe the solvation of ions have been developed

for use in statistical mechanics or molecular dynamics simulations. Most of these potentials

use rigid water monomers and simple descriptions of the interaction with the cation or an-

ion under consideration, e.g., two-body interactions based on partial charges and damped

Coulomb interactions. The more sophisticated versions of such models have been extended

to include long-range many-body polarization[5, 11–16]. However, even these models may

still fail to capture all of the effects associated with short-range 3-body terms and many

limit the fundamental “flexibility” of the water monomer. As one alternative, “direct dy-

namics” approaches have become quite popular. In these approaches the potential energy

for a specified configuration in a classical molecular dynamics simulation is computed using

electronic structure methods[17–20]. Unfortunately, the necessity of performing repeated

electronic structure calculations limits both the level of treatment and the length of the

simulation, and so these method may not correctly describe important intramolecular forces

such as dispersion.

Infrared spectroscopy is a particularly useful tool for studying water and electrolyte so-

lutions, since it contains information about both structure and dynamics. In particular,

the strong band due to the hydrogen-bonded OH stretch occuring at and below about 3500

cm−1 provides a signature of the hydrogen-bonding environments experienced by the water

monomer. Interactions with neighboring waters as well as charged ions lead to experimen-

tally measurable shifts in the line peak, which have been measured for solutions of NaCl,

NaBr, and NI, among others. [21–23] The rigorous simulation of these spectra is of course a

daunting task, starting with the potential and proceeding with rigorous, i.e., quantum, vi-

brational calculations. (See the interesting recent work by Skinner an co-workers on applying

a local-mode model for this purpose. [24–27])

In this paper, we address both aspects of this task and as a first relevant case consider

hydration of the ubiquitous chloride ion. First, we develop new chloride-water potentials

based on a many-body approach. Direct computation of an ab initio potential for an elec-

trolyte solution is a difficult task that is far beyond present computational capabilities.

However, the calculation of 1-, 2-, and even 3-body potentials for various interacting species

has become fairly routine within our approach[28]. Previously, we have developed ab ini-

tio full-dimensional potentials which accurately describe the 1-, 2-, and 3-body interactions

of water monomers. [29–32] In addition, we have previously developed an ab initio, full-
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dimensional potential that describes the interaction of a chloride ion with a single water

monomer[33]. Here we present two new potentials: one relying only on 2-body potentials

and a second which uses a 2-body term to describe the chloride-water interaction and an

additional 3-body term to describe the water-water interaction. Second, to address the

vibrational dynamics we apply the local-monomer model that we have developed for the

calculation of vibrational energies of intramolecular modes. [34] A very similar model has

also been developed by Halonen and co-workers for the water dimer, water trimer, and the

H2O-NO complex,[35–37] but our implementation is somewhat different than theirs. We

also show how our model may be used to calculate radial distribution functions.

The paper is organized as follows. In the next section we present the new potential

derived from the combination of our previous PESs. In the subsequent section we compare

harmonic results and stationary geometries using these surfaces with results obtained by

electronic structure methods. We also employ the local-monomer model in a post-harmonic

analysis of the vibrational energies and the computation of radial distribution functions

(RDFs). Finally, we present some conclusions and offer some posibilities for future work.

II. POTENTIAL FOR HYDRATED CHLORIDE

The PES for a hydrated chloride anion (and in general for any ion) with N water

monomers can be represented as a many-body potential in the following way:

V (0Cl, 1H2O, 2H2O, . . . , NH2O) = V (0Cl) +

N∑
i=1

V1−body(iH2O)

+
N∑

i=1

V (0Cl, iH2O) +
N∑

i=1

N∑
j>i

V2−body(iH2O, jH2O)

+
N∑

i=1

N∑
j>i

N∑
k>j

V3−body(iH2O, jH2O, kH2O)

+ higher order terms. (1)

Here 0 denotes the Cartesian coordinates of the chloride anion and 1 through N denote

the collective Cartesian coordinates of the first through the Nth water monomer. We have

employed two different versions of this potential, one in which we truncate at 2-body terms

and a second in which 3-body water terms are included. The 1-body terms V (OCl) and

V1−body(iH2O) and the chloride-water interaction term V (0Cl, iH2O) are taken from the pre-
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viously published water-chloride potential, based on fitting thousands of coupled cluster

(CCSD(T)) energies. [33] The 2-body term describing the pairwise interaction of water

monomers, V2−body(iH2O, jH2O) is taken from our high-accuracy water potential, again based

on fitting thousands of CCSD(T) energies. [29] Finally, for the water 3-body term we adopt

the functional form given by Kumar and Skinner [38] which was fit to our database of trimer

electronic energies. [34]

Vibrational spectroscopy represents an important tool which can be used to experimen-

tally distinguish between differently hydrated structures. A variety of methods for cal-

culating vibrational energies exist, from full-mode, fully-coupled vibrational configuration-

interaction (VCI) [39] to simple harmonic approximations. [40] Because we wish to focus

on larger clusters we have eschewed the computationally demanding full-mode VCI in fa-

vor of an approximate method which accounts for the local environment around each water

monomer. We term this model the “local-monomer model”. [34] The local-monomer model

(LMM) solves the Schrödinger equation for the vibrational motion of one monomer in the

potential defined by the rest of the system. Within this model, the Schrödinger equation for

each monomer is given by

[Tm + Um(Qm) − ǫnm
]χm(Qm) = 0, (2)

where Qm denotes the intramolecular normal-modes modes associated with monomer m, Tm

is the “exact” kinetic energy operator, and Um is the potential of the monomer in the field

defined by the rest of the system which is held fixed. For these calculations we choose Qm to

be the intramolecular modes in Cartesian coordinates obtained from a normal-mode analysis

of the monomer of interest, with the remaining system held fixed. For the kinetic energy

operator, Tm, we employ the kinetic energy from the Watson Hamiltonian, including the

vibrational angular momentum terms. [41] The total vibrational energy and wavefunction

of the entire system is then the union of solutions to each individual monomer Schrödinger

equation.

The radial distribution function describes the probability of finding an atom at a particu-

lar distance from one reference atom and is of central importance for relating our vibrational

calculation to thermodynamic quantities. Using the vibrational wavefunction, we can com-



5

pute the radial distribution function directly according to,

g(r) =

∫ ∑
i6=0

(δ(|~ri − ~r0| − r))|Ψ|2dτ, (3)

where ~r0 is the position vector of the reference atom, ~ri gives the coordinates of one of

the remaining atoms of the system, and the wavefunction is integrated over all space. The

sum of δ-functions insures that we count any atom that is a distance r from the reference

atom. Since our wavefunction is numerically represented on a grid in normal coordinates,

we evaluate the density |Ψ(~q)|2 at each grid point and convert the normal coordinates into

Cartesian coordinates. The Cartesian coordinates allow us to calculate the distances between

the reference atom and all other atoms, which are the different values of r to which the

contribution defined by the density is added to g(r). Because it is not generally feasible

to calculate a vibrational wavefunction for a fully coupled system, we apply this equation

within our local-monomer model. The normal modes are thus the “local” modes for the

monomer and the primary wavefunction we calculate is for the intramolecular motion. In

order to include the effects of the intermolecular modes, which are not included in the LMM,

we approximate the wavefunctions for these modes by the ground-state uncoupled harmonic

oscillator wavefunctions. For a monomer with N atoms, this leads to a total wavefunction

of the form

Ψ(q1, q2, . . . , q3N) = φ(q1) · · ·φ(q6)ψ(q7, . . . , q3N), (4)

where the φ(qi) are the ground-state harmonic oscillator functions, ψ(q7, . . . , q3N) is the

coupled vibrational wavefunction for the intramolecular modes, and the qi represent the

local normal modes. We also note that the local monomer model as not restricted to the

vibrational ground state and so we could potentially calculate RDFs with vibrationally

excited states.

III. RESULTS AND DISCUSSION

We have applied the above approach to the four smallest hydrated chloride clusters,

(H2O)Cl−, (H2O)2Cl−, (H2O)3Cl−, and (H2O)4Cl−.

The (H2O)Cl− PES and fully-coupled VCI calculations were reported in a previous pub-

lication. [33] We revisit it here to test the accuracy and effectiveness of the local-monomer

approximation. In Table I we compare previous VCI calculations[33] on the full PES with



6

the vibrational energies obtained using the local-monomer approximation. To appreciate

the magnitude of the shifts in the monomer energies due to presence of the chloride ion, we

give the corresponding VCI energies of the free water monomer, using the semi-empirical

Partridge-Schwenke potential [42] for reference. As seen, the error from the local monomer

model is of the order of 10 cm−1, which is much less than than the shift in these energies

relative to the isolated H2O.

For (H2O)2Cl− we located the global minimum geometry using the pairwise representa-

tion of the potential and show the configuration in Figure 1. Since the water monomers

are in an acceptor/donor configuration with respect to one hydrogen bond, we will de-

note the water monomer which is donating the hydrogen as “donor” and the other water

monomer as “acceptor”. We have independently optimized the geometry using second-order

Møller-Plesset perturbation theory (MP2) with the augmented correlation-consistent polar-

ized triple ζ basis set [43, 44] (aug-cc-pVTZ) using the MOLPRO [45] suite of programs, and

note that our results agree well with the previously reported MP2/aug-cc-pVDZ results of

Xantheas. [46] The geometries obtained with our surface and from this optimization are in

good agreement, as are the harmonic vibrational frequencies, shown in Table II.

Intramolecular H2O vibrational energies were also calculated for this cluster using the

LMM and here there are no benchmarks with which to compare. The results, given in Table

III, show interesting and significant differences for the two monomers. For most modes the

acceptor H2O energies are more red-shifted than the corresponding ones for the donor, with

the exception of the asymmetric stretch.

In Figure 2 we show comparisons between the 0 K radial distribution functions (RDF)

calculated for (H2O)2Cl− using the local-monomer model (LMM) and benchmark full-

dimensional path integral Monte Carlo (PIMC). The PIMC simulations at 6.25 K were

used as a benchmark for the quantum mechanical RDFs. This temperature is low enough to

ensure that there is no population in vibrationally excited modes. Evaluation of the density

operator requires that the effective inverse temperature β/P , where P is a parameter, be

sufficiently small[47] and here we used a value of P = 212 = 4096. The Monte Carlo proce-

dure was carried out using the standard Metropolis sampling methods[48] and the staging

algorithm to sample paths.[49] For the staging parameter we choose a value of 12 which

yielded a 39% acceptance ratio.

The LMM RDFs show remarkable agreement with the PIMC results and serve to empha-
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size the importance of including the intermolecular modes in this calculation. The distribu-

tion obtained directly from the LMM vibrational wavefunction, including only intramolecular

modes, (not shown) is narrower than the distribution shown due to the artificial absence

of the intermolecular modes between the chloride anion and the water monomers. These

modes are associated with the frustrated translations and rotations, and they allow the

monomer some freedom to move relative to the fixed system and thus contribute signifi-

cantly to the broadening of the observed RDFs. Inclusion of the 6 intermolecular modes

raises the complexity of the integration, and in order to evaluate the resulting 9-dimensional

integral, we employ Monte-Carlo integration. The individual components of the RDF are

shown in Figure 3. The donor and acceptor waters have slightly different geometries and

so each gives a unique contribution to the total RDF. The broad peak at approximately

2.1 Å corresponds to the hydrogen bridging the oxygen and chlorine atoms, while the peak

(or shoulder) occurring between 3.0 and 3.5 Å corresponds to either the free hydrogen or

the hydrogen participating in the hydrogen bond between the two water monomers. The

oxygen appears as the sharp peak near 3.0 Å.

For (H2O)3Cl− and for (H2O)4Cl− we employ two different versions of the water-chloride

potential. In the first version, we use a 2-body description for both the water-chloride and

the water-water interaction. In the second version, we include a 3-body term in the water-

water interaction which accounts for the majority of non-pairwise additive effects on the

water-water potential energy surface. In both cases, the inclusion of 3-body effects does not

significantly alter the minimum geometry, but does introduce improvements to the harmonic

frequencies.

For (H2O)3Cl− we obtain the global minimum shown in Figure 4. The minimum has

C3 symmetry with all three water monomers occupying equivalent positions. The three

water monomers form the base of a trigonal pyramid with the chloride anion at its apex.

This geometry agrees well with previously reported ab initio minimum searches. [46, 50, 51]

The harmonic frequencies on our PES also agree quite well with those reported at the

MP2/aVDZ level of theory and basis, as shown in Table IV. The LMM vibrational energy

levels are shown in Table V. Also we note that for both (H2O)2Cl− and (H2O)3Cl− we

are also able to find the additional local minima reported by Xantheas, however we have

not subjected these stationary points to the same analysis as the global minimum for each

cluster.
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We also calculated the 0 K RDFs, and these are shown in Figure 5. Comparing these with

those for the binary water cluster, we see only small differences between them. Clearly these

RDFs reflect the zero-point probability densities, and we expect that they will continue to

be the dominant contributors to the RDFs at non-zero temperatures. Even at 0 K, there is

considerable broadening due to zero-point probability densities, which warrants a comparison

with classical results that neglect this quantum effect. Comparison of the present RDFs with

those calculated at 250 K, by Tobias et al., using Car-Parinello direct dynamics[52] show

remarkable similarity although the present RDFs are still broader. This would seem to

indicate that the zero-point probability distribution is still at least of equal importance to

the total RDF, since the classical broadening due to geometry changes is still on a smaller

scale than the zero-point broadening. As the temperature is increased, the RDF will become

broader as the intermolecular modes are excited and the water molecules are able to sample

a wider array of configurations, as can be seen from bulk classical simulations [5, 27, 53]. For

the intramolecular modes, the RDF is likely to be dominated by the zero-point probability

even at higher temperatures since it is harder to thermally populate their excited vibrational

levels.

Finally, for (H2O)4Cl− we obtain the global minimum shown in Figure 6. The mini-

mum has C4 symmetry, where the chloride sits at the apex of pyramid with the four water

molecules arranged so that each has two hydrogen bonds with neighboring waters and one

hydrogen bond to the chloride. The harmonic frequencies on the PES are shown in Table

VI. For the LMM vibrational calculations, all four water molecules are equivalent, so results

for only one are shown in Table VII. The results using the PES with 3-body water-water

interactions are generally slightly better than those using only 2-body water-water interac-

tions although the differences are small. Comparing the series involving two, three, and four

waters, we see that the water-water interactions become progessively more important. The

shift of the OH vibrational frequency due to the ionic nature of the hydrogen bond formed

with chloride lessens and the shift due to the hydrogen bonding between waters increases.

IV. CONCLUSIONS

We reported the development of ab initio potential energy surfaces for microhydrated chlo-

ride, which we believe are an important step towards an ab initio description of electrolyte
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solutions. The potentials include highly accurate and flexible 2 and 3-body water terms

and are able to accurately reproduce geometries and frequencies for the clusters H2OCl−,

(H2O)2Cl−, (H2O)3Cl−, and (H2O)4Cl−. We have also demonstrated that the local-monomer

model is capable of giving accurate predictions of vibrational frequencies, which will be of

significant importance in calculating properties for bulk solutions. Finally, we have shown

that we can calculate radial distribution functions using the vibrational wavefunctions ob-

tained within the local-monomer approximation.

We believe this work can readily be extended to develop ab initio surfaces for the inter-

action of various cations and anions with water, with which we will study the properties

of bulk solutions. This approach contains a number of particularly attractive features: it

gives an accurate description of aqueous solutions that is readily compatible with quantum

mechanical calculation of the vibrational wavefunction, it can be systematically improved

by the incorporation of 3- or higher-body effects, and it obviates the need to a priori identify

the forces and corresponding functional forms that will be important.
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TABLE I: Comparison of vibrational frequencies (in cm−1) for (H2O)Cl− between exact vibrational

CI on our PES [33], denoted PES-VCI, the local-monomer model, denoted LMM-VCI, and exper-

iment [54]. For reference we also provide the vibrational frequencies of the free water monomer

from the potential of Partridge and Schwenke. [42]

Mode PES-VCI LMM-VCI Expt. Free H2O

HOH Bend 1660 1656 1650 1595

HOH Bend overtone 3308 3281 3283 3151

symmetric OH stretch 3123 3093 3130 3657

asymmetric OH stretch 3681 3681 3690 3756
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TABLE II: Comparison between harmonic frequencies on our PES and those calculated using

MP2/aVTZ for (H2O)2Cl−. All frequencies are in cm−1.

PES MP2/aVTZ

109 100

125 155

177 179

218 215

355 357

409 410

451 469

688 674

763 811

1718 1660

1733 1694

3387 3311

3461 3589

3805 3794

3840 3883
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TABLE III: Local-monomer model VCI vibrational energies of each water monomer in (H2O)2Cl−.

All frequencies are in cm−1.

Mode Donor H2O Accepter H2O

νbend 1668 1652

νsym 3173 3097

2νbend 3302 3268

νasym 3621 3662

νbend + νsym 4791 4692

3νbend 4904 4850

νbend + νasym 5277 5305

2νsym 6054 5910

2νbend + νsym 6367 6241
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TABLE IV: Comparison between harmonic frequencies on our PES and those calculated using

MP2/aVDZ [46] for (H2O)3Cl−. All frequencies are in cm−1.a

MP2/aVDZ PES PES

(2-body) (2 and 3-body)

[2] 96 [2] 101 [2] 115

128 130 136

[2] 163 [2] 176 [2] 179

207 230 232

[2] 372 [2] 349 [2] 384

425 427 [2] 421

[2] 446 [2] 403 436

661 609 643

[2] 708 [2] 717 [2] 731

804 775 804

[2] 1676 [2] 1724 [2] 1760

1692 1751 1732

[2] 3553 [2] 3471 3480

3581 3440 [2] 3489

3733 3781 3758

[2] 3749 [2] 3789 [2] 3771
a Numbers in brackets denote degeneracy.
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TABLE V: Local-monomer model VCI vibrational energies of the water monomers in (H2O)3Cl−.

All three monomers are equivalent. All frequencies are in cm−1.

Mode LMM-VCI H2O LMM-VCI H2O

(2-body) (2 and 3-body)

νbend 1663 1664

νsym 3179 3219

2νbend 3290 3301

νasym 3603 3584

νbend + νsym 4786 4832

3νbend 4884 4913

νbend + νasym 5254 5239

2νsym 6061 6193

2νbend + νsym 6346 6408
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TABLE VI: Comparison between harmonic frequencies on our PES including 2-body or 3-body

water terms and those calculated using MP2/aVDZ [46] for (H2O)4Cl−. All frequencies are in

cm−1.a

MP2/aVDZ PES PES

(2-body) (2 and 3-body)

59 45 51

103 107 115

[3] 114 [2] 118 [2] 132

186 132 139

[2] 188 149 174

202 [2] 192 [2] 198

[2] 390 227 229

397 325 369

399 [2] 394 [2] 403

438 405 416

[2] 562 418 423

644 [2] 469 [2] 516

681 610 658

[2] 727 686 706

845 [2] 709 [2] 730

1681 763 801

[2] 1695 [2] 1736 [2] 1741

1714 1744 1747

[2] 3603 1747 1755

3604 3457 3471

3614 [3] 3486 [2] 3502

3698 [3] 3774 3506

[2] 3699 3784 3745

3707 [2] 3749

3760
a Numbers in brackets denote degeneracy.
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TABLE VII: Local-monomder model for vibrational energies of the water monomers in (H2O)4Cl−.

All four monomers are equivalent. All frequencies are in cm−1.

Mode LMM-VCI H2O LMM-VCI H2O

(2-body) (2 and 3-body)

νbend 1667 1673

νsym 3194 3215

2νbend 3296 3308

νasym 3591 3561

νbend + νsym 4801 4828

3νbend 4891 4911

νbend + νasym 5247 5222

2νsym 6078 6129

2νbend + νsym 6354 6388
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FIG. 1: Minimum geometry for (H2O)2Cl−.
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FIG. 2: Comparison of the radial distribution functions for (H2O)2Cl− calculated using the local

monomer model (LMM) and full-dimensional path integral Monte Carlo (PIMC) at 6.5 K. The

LMM RDF shows excellent agreement with the PIMC calculation.
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FIG. 3: Radial distribution function for (H2O)2Cl− between chlorine and the water hydrogen and

oxygen atoms. The RDF includes the effect of a harmonic solution to the intermolecular modes

and is calculated for the global minimum geomtry at 0 Kelvin. The sticks indicate the classical (0

K) position of the atoms.
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FIG. 4: Minimum geometry for (H2O)3Cl−. The cluster has C3 symmetry and the three water

monomers form the base of a trigonal pyramid with the chloride anion at its apex.
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FIG. 5: Radial distribution function for (H2O)3Cl− between chlorine and the water hydrogen and

oxygen atoms. All three water monomers are identical and so the total RDF is simply three times

the RDF of one of the water molecules. The RDF shown includes a harmonic solution for the

intermolecular modes and the sticks indicate the classical (0 K) position of the atoms.
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FIG. 6: Minimum geometry for (H2O)4Cl−. The cluster has C4 symmetry and the four water

monomers form the base of a pyramid with the chloride anion at its apex.


